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Abstract

It is straightforward that breaking the orthogonality condition implies biased

and inconsistent estimates by means of the ordinary least squares. If moreover, the

data are contaminated it may significantly worsen the data processing, even if it

is performed by instrumental variables or the (scaled) total least squares. That is

why the method of instrumental weighted variables based of weighting down order

statistics of squared residuals (rather than directly squared residuals) was proposed.

The main underlying idea of this method is recalled and discussed. Then it is

also recalled that neglecting heteroscedasticity may end up in significantly wrong

specification and identification of regression model, just due to wrong evaluation of

significance of the explanatory variables. So, if the test of heteroscedasticity (which

is in the case when we use the instrumental weighted variables just robustified

version of the classical White test for heteroscedasticity) rejects the hypothesis of

homoscedasticity, we need an estimator of covariance matrix (of the estimators

of regression coefficients) resistant to heteroscedasticity. The proposal of such an

estimator is the main result of the paper. At the end of paper the numerical

study of the proposed estimator (together with results offering comparison of model

estimation by means of the ordinary least squares, the least weighted squares and

by the instrumental weighted variables) is included.

Key words: Robustification of classical instrumental variables; estimat-
ing the covariance matrix of the estimators of regression coefficients under
heteroscedasticity; the weighting of order statistics of squared residuals.

JEL classification: C13, C19
AMS classification: 62J05, 62G35.

INTRODUCTION

The linear regression analysis, classically performed by means of the ordinary
least squares (OLS), proved to be one of the most powerful tool for data
processing, see e. g. [6]. On the other hand, couple of conditions are to
be (nearly strictly) fulfilled for the OLS because even a slight departure
from them may cause large deviations of the estimates from true values of
parameters, see [13], [30] or [1]. One of important conditions is normality
of disturbances because otherwise OLS are the best method only among the
linear estimators, for particularly nice discussion see [11] (a bit forgotten
results concerning normality - not in regression framework - were given in
[8]). Important conditions are also orthogonality of explanatory variables
and disturbances and/or homoscedasticity of disturbances, see [17] or [43].
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It is easy to show that breaking the orthogonality condition implies that the
OLS-estimates are biased (see e. g. [14]) and hence method of the instru-
mental variables or the (scaled) total least squares are to be employed (for
the former see [2], [4], [25] or [26], for the latter then see [19] or [27])2. It
was also demonstrated in literature that neglecting heteroscedasticity may
lead to underestimation of variance of estimator of some regression coeffi-
cients and so to the wrong evaluation of significance of some explanatory
variables. Consequently it implies a false specification of model and finally it
brings wrong estimate of regression coefficients, even for those explanatory
variables which should be included into model, see e. g. [17] or [43] and see
also an example given below. Finally, it is nowadays commonly accepted
that the influential points can seriously damage the results of data process-
ing. Hence along with the classical methods some robust one(s) should be
used and results compared (see [11], [23] or [24], among many others). The
paper focuses on solution of these problems in the case when they appear
simultaneously.
So the paper offers a possibility how to cope (simultaneously) with the sit-
uation when:

• disturbances are heteroscedastic,

• orthogonality condition is broken,

and

• data are contaminated (by some outliers and/or leverage points).

1 Notations and framework

Let N denote the set of all positive integers, R the real line and Rp the p-
dimensional Euclidean space. In what follows it is assumed that all random
variables (r. v.’s) are defined on a probability space (Ω,A, P ). The linear
regression model given as

Yi = X ′
iβ

0 + ei =
p∑

j=1

Xijβ
0
j + ei, i = 1, 2, ..., n

will be considered (all vectors will be assumed to be the column ones) with
random explanatory variables. Throughout the paper we shall assume:

2Due to the construction of the methods the instrumental variables are (mainly) used
in social sciences while the total least squares in the exact ones.
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C1 The sequence {(V ′
i , ei)

′}∞i=1 is sequence of independent p-dimensional
random variables distributed according to the distribution functions (d. f.)
FV,ei(v, r) = FV,e(v, σi ·r), i ∈ N where FV,e(v, r) is a parent d. f., IEV1 = 0,
the covariance matrix IE {V1V

′
1} is regular and σ2

i = var (ei|Vi) with 0 <
σ2
i < K < ∞. There is ℓ, 0 ≤ ℓ < p and coordinates V11, V12, ..., V1ℓ of the

vector V1 are discrete with the distribution given by {p1,v = P (V11 = v1, V12

= v2, ..., V1ℓ = vℓ)}{v∈U} where U ⊂ T and T ⊂ Rℓ is a compact. The

d. f. of the vector (V1,ℓ+1, V1,ℓ+2, ..., V1,p−1, e1)
′ is absolutely continuous, the

density fV1,ℓ+1,V1,ℓ+2,...,V1,p−1,e1(v, e) is bounded, say by B, and the marginal
density fV1,ℓ+1,V1,ℓ+2,...,V1,p−1(v) have a bounded support, i.e. putting M =

sup
{
∥v∥ : fV1,ℓ+1,V1,ℓ+2,...,V1,p−1(v) > 0

}
, we have M < ∞. Finally, con-

sider the sequence {(X ′
i, ei)

′}∞i=1 where Xi1 = 1 and Xij = Vi,j−1, j =
2, 3, ..., p for all i ∈ N . This sequence will be considered as the sequence of
explanatory variables and of disturbances.

Notice please that the marginal d.f.’s FV (v) of vectors Vi’s are the same
for all i ∈ N . Also notice that we assume that the disturbances ei’s can
be correlated with explanatory variables Vi’s. Moreover, disturbances are
assumed generally heteroscedastic. Finally, as fV,ei(v, r) = σi · fv,e(v, σi · r),
we have fV,ei(v, r) < supi∈N σi ·B. Notice also that the assumption IEV1 = 0
(which of course implies that IEX1 = (1, 0, ..., 0)′) does not restrict the
generality because otherwise we would consider X̃j1 = X1j − IEX1j and
β̃0
j = β0

j + IEX1j · β0
j for j = 2, 3, ..., p.

The form of condition C1 is a bit complicated because we need an upper
bound on the density of those explanatory variables which are absolutely
continuous and on the other side we would like to keep framework enough
general to allow for discrete explanatory variables. In fact, the structure of
explanatory variables X’s is simple. The first coordinate represents in fact
the intercept, the second one up to ℓ + 1 are discrete r.v.’s and the rest of
coordinates are absolutely continuous r. v.’s.

Further, for any β ∈ Rp ri(β) = Yi −X ′
iβ denotes the i-th residual3 and

r2(h)(β) stays for the h-th order statistic among the squared residuals, i.e.
we have

r2(1)(β) ≤ r2(2)(β) ≤ ... ≤ r2(n)(β).

3Sometimes residuals are considered only with respect to an estimator β̂ of β0 as ri =
Yi−X ′

iβ̂. We shall consider them generally with respect to any β ∈ Rp as ri(β) = Yi−X ′
iβ.

The reasons for it will be evident e.g. from Definition 1.
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2 The Least Weighted Squares

To be able to discus in the fourth section the robustified version of the
instrumental variables (as given in [33] and called there the instrumental
weighted variables) we need to remind (see [30] and [31]):

Definition 1 Let for any n ∈ N wi ∈ [0, 1], i = 1, 2, ..., n. Then

β̂(LWS,n,w) = argmin

β∈Rp

n∑
i=1

wir
2
(i)(β) (1)

is called the least weighted squares (LWS) estimator.

Remark 1 Let us fix an integer h ∈ [n/2, n]. Then for wh = 1 and wi = 0
for 1 ≤ i ≤ n, i ̸= h, β̂(LWS,n,w) turns to be the least median of squares

β̂(LMS,n,h) = argmin

β∈Rp

r2(h)(β)

and for wi = 1, i = 1, 2, ..., h and w = 0 otherwise, β̂(LWS,n,w) is the least
trimmed squares (for both see [11] or [24])

β̂(LTS,n,h) = argmin

β∈Rp

h∑
i=1

r2(i)(β).

Remark 2 The idea of downweighting observations or residuals was em-
ployed from the very beginning of robust statistics. After all, generalized
M -estimators do it also as well as recalled the least median of squares and
the least trimmed squares. Nevertheless, the least median of squares and the
least trimmed squares have advantage in comparison with (generalized) M -
estimat- ors, namely they are “automatically” scale-adjusted. In other
words, both of them - as well as the least weighted squares - are scale-
and regression-equivariant. To achieve scale- and regression-equivariance
for M -estimators we have to studentize the residuals by scale-equivariant
and regression-invariant estimator of standard deviation, see [3] or [15].
The only example of such an estimator was given in [15] (to my knowledge),
being based on regression quantiles (or regression ranks, see [15]). However,
it is not very easy to compute it. Hence it is preferable to have estimators
which do not need scale adjustment.
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We usually generate the weights wi’s by a non-increasing (absolutely contin-

uous) weight function w(v) : [0, 1] → [0, 1], putting wi = w
(
i−1
n

)
. Then (1)

is changed to

β̂(LWS,n,w) = argmin

β∈Rp

n∑
i=1

w

(
i− 1

n

)
r2(i)(β). (2)

Of course, monotonicity of w restricts a bit generality as e. g. LMS cannot
be then assumed as special case of LWS. Similarly, continuity hamper to
see LTS as special case of LWS. The reason for restricting ourselves on
continuous function w is the fact that for the discontinuous function the
subsample stability of the estimator may be low. In fact, when w has a
point of discontinuity, as in the case of the least median of squares and
the least trimmed squares, the values of estimates may change dramatically
when excluding one observations (at the first glance surprisingly not at the
outskirts of a ”cloud” of data but usually at the center of it), see [28], [29]
or [34].
So we may conclude that β̂(LWS,n,w) has the same advantage as β̂(LMS,n,h)

and β̂(LTS,n,h) (being scale- and regression-equivariant) and simultaneously
(if the weight function w is continuous) having acceptable subsample stabil-
ity.

In what follows we will need (2) in a bit modified form. So following Hájek
and Šidák [10] for any i ∈ {1, 2, ..., n} let us define the rank of i-th residual
by

π(β, i) = j ∈ {1, 2, ..., n} ⇔ r2i (β) = r2(j)(β)

(notice that π(β, i) is r. v. since it depends on Xi(ω)’s and ei(ω)’s). Then
we have

β̂(LWS,n,w) = argmin

β∈Rp

n∑
i=1

w

(
π(β, i)− 1

n

)
r2i (β). (3)

Now, realize please, that having fixed β ∈ Rp and denoting ai(β) = |ri(β)|,
the order statistics a(i)(β)’s and the order statistics of the squared residuals
r2(i)(β)’s assign to given fix observation i0 (say) the same rank, i. e. if the

squared residual of the observation i0 is on the ℓ-th position (say) in the
sequence

r2(1)(β) ≤ r2(2)(β) ≤ ...r2(n)(β),
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then the absolute value of residual of the i0-th observation is in the sequence

a(1)(β) ≤ a(2)(β) ≤ ...a(n)(β)

also on the ℓ-th position. Further, let us denote for any β ∈ Rp and any v ∈
R the empirical d. f. of the absolute value of residuals |ri(β)| = |Yi −X ′

iβ|
by F

(β)
n (v), i. e.

F
(n)
β (v) =

1

n

n∑
i=1

I {|ri(β)| < v} =
1

n

n∑
i=1

I
{
|Yi −X ′

iβ| < v
}

(4)

where I {A} denotes the indicator of the set A. Now, let’s realize that the

empirical d. f. F
(n)
β (v) has the first jump just ”after” a(1)(β) (as due to the

sharp inequality in (4), we have F
(n)
β (a(1)(β)) = 0 and limv→[a(1)(β)]+ = 1

n),

the second jump at a(2)(β) (but F
(n)
β (a(2)(β)) =

1
n), the third at a(3)(β) (but

F
(n)
β (a(3)(β)) =

2
n), etc. Hence it has the π(β, i)-th jump at a(π(β,i))(β), i. e.

F
(n)
β (a(π(β,i))(β)) = F

(n)
β (|ri(β)|) =

π(β, i)− 1

n
.

So, we can rewrite (3) as

β̂(LWS,n,w) = argmin

β∈Rp

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
r2i (β). (5)

The equation (5) represents the extremal problem which defines the classical
weighted least squares with “randomized” weights, namely with the weights

w
(
F

(n)
β (|ri(β)|)

)
. The solution of such problem is given as

β̂(LWS,n,w) =
(
X ′W (F

(n)
β )X

)−1
X ′W (F

(n)
β )Y (6)

where X = (X1, X2, ..., Xn)
′ is the random design matrix (where the as-

sumptions about the random vectors Xi’s were given in conditions C1),
Y = (Y1, Y2, ..., Yn)

′ is the vector of response variables and W (F
(n)
β ) is the

diagonal matrix with the i-th diagonal element equal to w
(
F

(n)
β (|ri(β)|)

)
.

It is straightforward that (6) is the solution of the normal equations

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Xi
(
Yi −X ′

iβ
)
= 0. (7)

Finally, (7) is just the equation which will allow us to define in the next
section the robustified version of the instrumental variables.
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3 Potential problems with neglecting heteroscedas-
ticity

The consequences of not taking into account of heteroscedasticity of error
terms are frequently underestimated due to the fact that it is usually stressed
that under heteroscedasticity the OLS-estimates are still unbiased, consis-
tent and asymptotically normal, so that the only deterioration of estimates
is a decrease of efficiency. In fact however, neglecting heteroscedasticity may
lead to the false evaluation of significance of explanatory variables due to the
fact that it is established by means of an estimate of nonexisting common
variance of all error terms. Consequently it produce the wrong specifica-
tion of model. Finally, it may end up in significantly biased estimates of
coefficients of regression model. Let’s give an example.

We looked for a model of export from the Czech republic into EU for the
period from 1993 to 2001. The Czech economy was divided into 61 industries
and export (X), import (M), export prices (PI), import prices (ME), value
added (VA), capital (K), labor (L), debts (DE), foreigner direct investment
(FDI) and gross domestic production per capita in EU (GDPeu) were em-
ployed as response and explanatory variables, respectively. We arrived at
the model (t = 1994, 1995, ..., 2001, i = 1, 2, ..., 61)

ln(Xi,t) = β1 + β2 · ln(Xi,t−1) + ...+ β14 · ln(GDPeui,t−1) (8)

with the estimate of coefficients given as (explanatory variable with the
subindex t-1 stays for the lagged value of it)4:

Explanat. Variable Estim. Coeffs Stand. Errors p-values

intercept 9.643 5.921 0.104
ln(Xt−1) 0.827 0.033 0.000

ln(PEt) -0.164 0.06 0.007

ln(PEt−1) 0.2 0.062 0.001

ln(V At) 0.337 0.077 0.000

ln(V At−1) -0.228 0.079 0.004

ln(Kt/Lt) -0.625 0.159 0.000

4As Durbin-Watson statistics indicated autocorrelation of error terms, we employed
proposal of James Durbin to include into the model also lagged values of both - response
as well as explanatory variables, see e. g. [7] or [14]. This approach is much safer then
application of Cochrane-Orcutt (see [5]) or Prais-Winston (see [22]) transformation. For
a nice discussion of it see [18]. Grayham Mizon there in fact says: “If we consider wrong
model, we have nearly no chance to estimate correctly the parameters of the true one.”
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Explanat. Variable Estim. Coeffs Stand. Errors p-values

ln(Kt−1/Lt−1) 0.518 0.157 0.001
ln(DEt/V At) 0.296 0.122 0.016

ln(DEt−1/V At−1) -0.292 0.119 0.015

ln(FDIt) 0.147 0.056 0.009

ln(FDIt−1) -0.151 0.056 0.007

ln(GDPeut) 1.126 0.629 0.045

ln(GDPeut−1) -1.966 0.623 0.002

The model seemed to be rather complicated. Nevertheless, it was well de-
termined with approximately normally distributed residuals and, as the p-
values indicate (see table above), all explanatory variables (except of in-
tercept) were significant. Nevertheless, White’s test of homoscedasticity
gave value 244.1 with corresponding p-value equal to 0.0000. Clearly the
error terms in model were heteroscedastic. So, it was necessary for appro-
priate judgement about the significance of explanatory variables to employ
White’s estimator of covariance matrix of the estimates of regression coeffi-
cients which is given as

Σ̂ =
1

8 · 61

2001∑
t=1994

61∑
i=1

r2i,t(β̂
(OLS,n)) ·Xi,t ·X ′

i,t

where ri,t(β) = Yi,t −X ′
i,tβ, for details see White (1980). We obtained then

Explanat. Variable Estim. Coeffs Stand. Errors p-values

intercept 9.643 4.128 0.200
ln(Xt−1) 0.827 0.046 0.000

ln(PEt) -0.164 0.107 0.127

ln(PEt−1) 0.2 0.107 0.062

ln(V At) 0.337 0.203 0.098

ln(V At−1) -0.228 0.192 0.235

ln(Kt/Lt) -0.625 0.257 0.016
ln(Kt−1/Lt−1) 0.518 0.301 0.087

ln(DEt/V At) 0.296 0.292 0.312

ln(DEt−1/V At−1) -0.292 0.282 0.302

ln(FDIt) 0.147 0.141 0.300

ln(FDIt−1) -0.151 0.123 0.222

ln(GDPeut) 1.126 1.097 0.305

ln(GDPeut−1) -1.966 0.995 0.049

Excluding successively insignificant explanatory variables (insignificant on
the level p > 0.05), we finally arrived at the model
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Explanatory Estimated Standard
Variable Coefficients Errors t-statistics p-value

intercept 9.643 4.128 2.336 0.200
ln(Xt−1) 0.804 0.05 16.125 0.000

ln(V At) 0.149 0.039 3.784 0.000

ln(Kt/Lt) -0.214 0.063 -3.38 0.001

ln(GDPeut) 1.896 0.782 2.425 0.016

ln(GDPeut−1) -2.538 0.778 -3.261 0.001

which is much simpler than (8)5. Of course, neglecting heteroscedastic-
ity leads to the estimates of regression coefficients which are still unbiased,
consistent and asymptotically normal but which can have rather large vari-
ances and hence they are less reliable. Moreover, due to the wrong p-values,
the model may include some insignificant explanatory variables which can
“contest” with those really significant. The consequence may be that the
“explanation” of the response variable is “divided” among more explanatory
variables than it would be appropriate, so that identification of regression
model may be incorrect. In other words, when applying White’s estimate
of covariance matrix of the estimates of regression coefficients and correct-
ing significance judgement, excluding successively the “most insignificant”
explanatory variable, we may meet with situation when the estimates of
other coefficients may dramatically change. So, the conclusion is that the
heteroscedasticity of error terms should be taken into account seriously.

4 Instrumental weighted variables

In this section we discus the possibilities of identifying regression model when
the orthogonality condition is broken and recall the instrumental weighted
variables (IWV) - a robustified version of the classical instrumental variables.
We also recall conditions for consistency of IWV as a basic results in the
study of this robust method of estimating regression model.
The violation of orthogonality condition IE {ei|Xi} = 0 implies that

lim
n→∞

1

n

n∑
i=1

Xiei ̸= 0 in probability (9)

5The model passed all commonly applied tests, e. g. for normality of residuals, ho-
moscedasticity, specification of model, etc.
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and hence also inconsistency of

β̂(OLS,n) = β0 +

(
1

n

n∑
i=1

XiX
′
i

)−1
1

n

n∑
i=1

Xiei. (10)

The most frequently given examples of failure of the orthogonality condition
are the measurement of explanatory variables with a random error (error-
in-variable model) or the (dynamic) regression model with lagged response
in the role of explanatory variable, see e.g. [9] or [14].
One possibility how to cope with this situation, usually employed in natu-
ral sciences is the method of the (scaled) total least squares, see [27]. This
method can be applied even in the case when we assume that only explana-
tory variables were measured with random error while response variable
without it (for details as well as discussion see [20]). Econometricians of-
fer as a remedy the method of the instrumental variables which defines the
estimator as (any) solution of the normal equations

n∑
i=1

Zi(Yi −X ′
iβ) = 0 (11)

where the sequence {Zi}∞i=1 is a sequence of instruments for explanatory vari-
ables Xi’s given as follows: Let {Ui}∞i=1 be a sequence of (p - 1)-dimensional
r. v.’s such that

IE (e1|U1) = 0, (12)

so that putting

Zi1 = 1 and Zij = Ui,j−1 j = 2, 3, ..., p (13)

for all i ∈ N the orthogonality condition IE (e1|Z1) = 0 holds. The analogy
of (10)

β̂(IV,n) = β0 +

(
1

n

n∑
i=1

ZiX
′
i

)−1
1

n

n∑
i=1

Ziei. (14)

hints that the estimator evaluated by means of method of the instrumental
variables is (under some conditions) consistent provided (e. g.)

IEZ1X
′
1 = Q is regular. (15)

Then, following (7), we can define a robustified version of instrumental vari-
ables (see [33], [35] or [36])
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Definition 2 Any solution of

n∑
i=1

w
(
F

(n)
β (|ri(β)|)

)
Zi
(
Yi −X ′

iβ
)
= 0. (16)

will be called instrumental weighted variables, (IWV) and denoted by β̂(IWV,n,w).

In the case of classical instrumental variables (13) and (14) indicated that
we don’t need any “qualitative relation” between explanatory variables and
instruments6. However for robust version of the method we need some as-
sumption about the mutual behaviour of Xi’s and Zi’s even for consistency.
To be able to formulate it let’s enlarge notations.
Let’s recall that we assume heteroscedasticity of the disturbances (see C1)
and define a “mean” d.f.

F n,β(v) =
1

n

n∑
i=1

P
(∣∣Yi −X ′

iβ
∣∣ < v

)
. (17)

The possibility to approximate the empirical distribution F
(n)
β (v) - see (4) -

by F n,β(v) uniformly in v ∈ R as well as in β ∈ Rp opened in fact the way
for results given below, see [41]. Further define

Fβ′ZX′β(u) = P (β′Z1X
′
1β < u)

and put for any λ ∈ R+ and any a ∈ R

γλ,a = sup
∥β∥=λ

Fβ′ZX′β(a). (18)

Finally, for any λ ∈ R+ let us denote

τλ = − inf
∥β∥≤λ

β′IE
[
Z1X

′
1 · I{β′Z1X

′
1β < 0}

]
β. (19)

C3 The (p - 1)-dimensional r. v.’s {Ui}∞i=1 are independent and identically
distributed with distribution function FU (u), the covariance matrix IE {U1U

′
1}

is regular and positive definite, IE (ei|Ui) = 0 and σ2
i = var (ei|Ui) with 0 <

6(12) is sufficient for unbiasedness and consistency. It is however easy to see that the

variances of β̂
(IV,n)
j ’s depend on the mutual relation between Xi’s and Zi’s. In other

words, if there are not “natural” instrument, e.g. lagged values, the method can work
poorly.
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σ2
i < K < ∞. There is ℓ, 0 ≤ ℓ < p and coordinates U11, U12, ..., U1ℓ of the

vector U1 are discrete with the distribution given by {p1,v = P (U11 = v1, U12

= v2, ..., U1ℓ = vℓ)}{v∈S} where S ⊂ G and G ⊂ Rℓ is a compact. The

d. f. of the vector (U1,ℓ+1, U1,ℓ+2, ..., U1p)
′ is absolutely continuous, the den-

sity fU1,ℓ+1,V1,ℓ+2,...,V1p(v) is bounded, say by C, and have a bounded sup-

port, i.e. putting M∗ = sup
{
∥v∥ : fU1,ℓ+1,U1,ℓ+2,...,U1p(v) > 0

}
, we have

M∗ < ∞. Further, consider the sequence {(Z ′
i, ei)

′}∞i=1 where Zi1 = 1 and
Zij = Ui,j−1, j = 2, 3, ..., p for all i ∈ N . Moreover, there is q > 1 so that
IE {∥Z1∥ · ∥X1∥}q < ∞ and n0 ∈ N so that for all n > n0

IE

{
1

n

n∑
i=1

[
w(F n,β(|ei|))ZiX

′
i

]}

is regular. Finally, there is a > 0, b ∈ (0, 1) and λ > 0 so that

a · (b− γλ,a) · w(b) > τλ. (20)

For discussion of C3 see [35] or [37].

C4 There is n0 ∈ N so that for all n > n0 the vector equation

β′IE

{
1

n

n∑
i=1

[
w(F n,β(|ri(β)|))Zi

(
ei −X ′

iβ
)]}

= 0 (21)

in the variable β ∈ Rp has unique solution β0 = 0.

Lemma 1 Let Conditions C1, C2, C3 and C4 be fulfilled. Then any se-

quence
{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations (16) is weakly

consistent.

Proof is given in [37] where also a simulation study demonstrates that the
algorithm, firstly presented in [36], works very well.

5 Estimating covariance matrix of the IWV-estima-
tors under heteroscedasticity

When processing data we can arrive at a suspicion that data are contam-
inated and then we may use except of OLS also LWS. If the results are
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similar, our suspicion is probably wrong. In the opposite case we may still
have a suspicion that the orthogonality condition was broken. Then we
may use also IWV and a robustified version of Hausman test (see [21]).
Finally, we should test for homoscedasticity/heteroscedasticity by the ro-
bustified version of White test (see [40]). Of course, a couple of other tests
as Durbin-Watson (in the case of panel data) or test for normality of resid-
uals are to be applied. A few of them are already available for some robust
methods, see [16] or [32], others are under progress.
If the homoscedasticity is rejected, but we ignore it, the conclusions about
significance of the explanatory variables may be misleading - because they
are based on the wrong assumption that the standard deviations of the
disturbances are the same for all of them. Hence we need an estimator of
variance matrix of the estimates of regression coefficients which is resistant
against heteroscedasticity. Such estimator of covariance matrix for the case
when we process data by means of the ordinary least squares was proposed by
Halbert White [42]. To be able to present its robustified version (designed for
the IWV) we need some conditions (which allowed to prove

√
n-consistency

and derive the asymptotic representation of the respective estimators of
regression coefficients).

NC1 Denote by fe|V (r|V1 = x) the conditional density corresponding to the
d.f. FV,e(v, r)). The density fe|V (r|V1 = x) is uniformly with respect to x
Lipschitz of the first order (with the corresponding constant equal to Be).
Moreover, f ′

e(r) exists and is bounded in absolute value by U ′
e.

NC2 The derivative w′(α) of the weight function is Lipschitz of the first
order (with the corresponding constant Jw).

Denote by g(r) the density of the d.f. G(r) = P (e21 < r) (notice that under
C1 density g(r) always exists). Moreover, for any α ∈ (0, 1) denote by u2α
the upper α-quantile of d.f. G, i.e. we have P (e21 > u2α) = α.

AC1 For any α ∈ (0, 1) there is δ(α) > 0 so that

inf
r∈(0,u2

α+δ(α))
g(r) > Lg,α > 0 and inf

|r|∈(0,
√

u2
α+δ(α))

f(r) > Lf,α > 0.

(22)
Similarly as above (see text under C1) the condition AC1 implies in fact that
(22) holds for all densities gei(r) and fei(r), i.e. for all i ∈ N .

AC2 There is q > 1 so that supi∈N IE |ei|2q < ∞.
Following Halbert White ([42]), we may prove:
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Lemma 2 Let the conditions C1, C2, C3, C4, NC1, NC2, AC1 and AC2
hold. Then[

1

n

n∑
i=1

ZiX
′
i

]−1 [ n∑
i=1

r2i (β̂
(IWV,n,w))ZiX

′
i

] [
1

n

n∑
i=1

ZiX
′
i

]−1

(23)

is weakly consistent estimator of covariance matrix of β̂(IWV,n,w).

The proof follows in a straightforward way from the lemma 3.

6 Simulation study of robustified White’s estima-
tor

In the simulations we employed 3 different frameworks as follows:
In every framework we fixed T (number of observations) and p (dimension
of model) and considered regression model

Yt = β1 ·Xt1 + β2 ·Xt2 + ...+ βp ·Xtp + et, t = 1, 2, ..., T (24)

(of course, T , p and values of regression coefficients βj ’s are specified at the
beginning of reports of the results for each framework).
Further, for every framework we generated one fix sequence {σt}Tt=1 of i.i.d.
r.v.’s uniformly distributed on the interval [0.5, 1.5]. Finally, we selected
α ∈ (0, 1) (α is also specified at the start of every framework). Then we
repeated 100 experiments, each of them containing the following 4 steps.
Step 1 In each experiment we started with generating two, mutually in-
dependent i.i.d. sequences {vt}Tt=1 and {ut}Tt=1 of p-dimensional standard

normal r.v.’s. which were independent from the sequence {σt}Tt=1.
Step 2 Then we put

Xt = α · vt + (1− α) · ut, Zt = ut and et = σt

p∑
j=1

vtj . (25)

It follows from (25) that {Xt}∞t=1 is a sequences of i.i.d. r.v.’s, similarly
{Zt}∞t=1 while {et}∞t=1 is a sequences of independent r.v.’s but et’s are het-
eroscedastic. (25) also implies that Xt’s and et’s are mutually correlated
while Zt’s and et’s are mutually independent. In what follows we have
employed Xt’s as explanatory variables, Zt’s as instrumental variables and
finally, et’s as disturbances.
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Step 3 We evaluated response variables employing model (24) (without in-
tercept, as estimating intercept - which is always independent from distur-
bances - is not interesting). Although we know d.f. of Xt’s,Zt’s and of et’s,
due to the fact that we can find only approximative numerical solution of

the extremal problem (16), we are not able to evaluate var(
ˆ̂
β
(IWV,n,w)

j ), j =
1, 2, .., p. That is why we simulated values these variances, i.e. we repeat
100 times the experiments and evaluated empirical value of them, see (26)
below.

Step 4 Finally we contaminated data. Five last explanatory vectors of
explanatory variables as well as instrumental variables were shifted about±8
with randomly selected sign (to create leverage points). First two response
variables were increased about 5 (to generate outliers).

As already mentioned, each experiment was 100 times repeated (in given
fixed framework) and estimates of regression coefficients by means of OLS,
LWS and IWV were evaluated (the OLS and LWS estimates were evaluated
to demonstrate that they are not able to cope with the fact that the or-
thogonal condition is broken; of course, OLS estimates suffer also due to the
contamination of data). We denoted them for the k-th experiment by

β̂
(OLS,T )
(k) , β̂

(LWS,T,w)
(k) and β̂

(IWV,T,w)
(k) ,

respectively. Then we calculated mean values (over these 100 experiments)
of the estimates

β̂
(OLS,T )
(mean) =

1

100

100∑
k=1

β̂
(OLS,T )
(k) , β̂

(LWS,T,w)
(mean) =

1

100

100∑
k=1

β̂
(LWS,T,w)
(k)

and

β̂
(IWV,T,w)
(mean) =

1

100

100∑
k=1

β̂
(IWV,T,w)
(k) .

At the end of realization of given framework we considered only the IWV-
estimates. As for each framework 100 experiments were performed, we ob-
tained 100 estimates β̂IWV

j , j = 1, 2, .., p of regression coefficients and hence
we may evaluate the “empirical variance” of these estimates and compare
them with the estimate of variances given by (23). In other words, we eval-
uated

v̂ar(β̂j) =
1

100

100∑
k=1

(
[β̂

(IWV,T,w)
(k) ]j − [β̂

(IWV,T,w)
(mean) ]j

)2
, j = 1, 2, ..., p. (26)
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All calculations including generating random numbers were performed em-
ploying MATLAB. The software is available on request. The subroutine for
generating weights is given, as an example in the Appendix.
The results are collected below, successively for 3 frameworks.

1. framework T = 50, p = 2 and α = 0.3.

True values of regression coefficients

β0
1 = −3.7 β0

2 = 4.8

Ordinary Least Squares Least Weighted Squares Instrumental Weighted Vars

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

-4.51 2.86 -4.28 2.63 -3.58 4.67

Instrumental Weighted Variables - variances of the estimators of regression coeffs

Empirical values Estimates by (23)

v̂ar(β̂1) v̂ar(β̂2) v̂ar(β̂1) v̂ar(β̂2)

1.350 2.764 1.304 2.647

2. framework T = 80, p = 3 and α = 0.2.

True values of regression coefficients

β0
1 = −4.1 β0

2 = 1.9 β0
3 = −3.2

Ordinary Least Squares Least Weighted Squares Instrumental Weighted Vars

β̂1 β̂2 β̂3 β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

-3.51 2.75 -4.33 -3.78 2.98 -4.59 -4.02 2.04 -3.36

Instrumental Weighted Variables - variances of the estimators of regression coeffs

Empirical values Estimates by (23)

v̂ar(β̂1) v̂ar(β̂2) v̂ar(β̂3) v̂ar(β̂1) v̂ar(β̂2) v̂ar(β̂3)

2.621 0.967 2.055 2.227 0.971 2.414

3. framework T = 100, p = 4 and α = 0.4.
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True values of regression coefficients

β0
1 = 3.2 β0

2 = −1.1 β0
3 = −2.6 β0

4 = 4.8

Estimates of regression coefficients

Ordinary Least Squares Least Weighted Squares Instrumental Weighted Vars

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4

4.57 -2.75 -2.34 3.48 3.92 -2.01 -3.02 2.94 3.36 −1.18 −2.48 4.67

Instrumental Weighted Variables - variances of the estimators of regression coeffs

Empirical values Estimates by (23)

v̂ar(β̂1) v̂ar(β̂2) v̂ar(β̂3) v̂ar(β̂4) v̂ar(β̂1) v̂ar(β̂2) v̂ar(β̂3) v̂ar(β̂4)

2.905 2.001 2.071 3.022 3.006 1.999 1.968 3.204
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8 Appendix
The asymptotic representation (27) under homoscedasticity was already proved in
[35] under homoscedasticity. Nevertheless, we need it in a bit more general way,
under heteroscedasticity. The way for proving it was in fact opened by [41].

Lemma 3 Let the conditions C1, C2, C3, C4, NC1, NC2, AC1 and AC2 hold.
Then √

n
(
β̂(IWV,n,w) − β0

)
=[

1

n

n∑
i=1

w
(
F n,β(

0|ei|)
)
· ZiX

′
i

]−1

· 1√
n

n∑
i=1

w
(
F n,β0(|ei|)

)
· Ziei + op(1) (27)

as n → ∞.

For the proof see [39].
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8.1 Routine for generating data

In this section we offer a pattern of software, namely routine which indicates
how the weights were created. They were generated by means of subroutine.
% Generating weights
% T - number of observations
% h - number of observations with large weights from 1 to 1-h/k
% h-g - number of observations with rapidly decreasing weights
% T-h-g - observations with zero weights
% k - level to go down with large weights

function [w]=Weights(h,g,T,k)
L=(1-h/k)/(g-h+1);
for i=1:T; w(i,1)=0; end f=g-h; for i=1:f; w(i+h,1)=1-h/k-i*L; end
for i=1:h; w(i,1)=1-i/k; end

For all frameworks we put h = T − 7, h − g = 5 and k = 10 · h. Other
software is available on request.
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[28] Vı́̌sek, J.Á. (1994): A cautionary note on the method of Least Median
of Squares reconsidered, Transactions of the Twelfth Prague Confer-
ence on Information Theory, Statistical Decision Functions and Ran-
dom Processes, Lachout, P., Vı́̌sek, J.Á. (eds), Academy of Sciences of
the Czech Republic, Prague, 1994, 254 - 259.
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